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Sign problem in tensor network contraction (arXiv:2404.19023)
Positive bias makes tensor network contraction tractable (arXiv:2410.05414)

Based on:



We try to understand this aspect rigorously by studying:

Random tensor networks with controlled sign structure.

Sign problem and tensor networks

In quantum Monte Carlo (QMC) simulations, especially for fermions, “sign problem” 
exponentially increases the number of samples needed. 

It has often been narrated that tensor networks can circumvent the sign problem, 
since by construction they do not depend on local basis choices.



Tensor networks (TNs)

Edges: , d is called bond-dimension

2D square-lattice graph with n vertices

Vertices: , order-4 tensor

Edge labeling: an assignment of values to all edges

e.g.

Contraction of a TN yields a number:



The problems we study

Contracting a tensor network with random entries. Larger mean → more positive.
 

- Is the contraction easier when the mean increases?

- If yes, when does the contraction become easy/hard?

i.i.d. for all 
entries & all 
tensors.



Part I: Sign problem in tensor network contraction   
           (arXiv:2404.19023)

We predicted the complexity transition point through an effective 
classical statistical model, and numerically verified the transition.

This transition happens much earlier than “sign problem” disappears. 
In other words, the entries only need to be slightly positive.

Transition point: mean = 1/bond-dimension



Effective stats model
Contractability ≈ entanglement in the TN 

Increased bond-dimension



Effective stats model
Contractability ≈ entanglement in the TN      Average of copies of random TNs

Renyi-2 
entropy

“Mixed” 
boundary condition

“Fixed” 
boundary condition



Effective stats model
Contractability ≈ entanglement in the TN      Average of copies of random TNs

Partition function of a ferromagnetic 
Potts model with external field

Partition function of classical stats model

Average of copies of 
random tensors can 
be computed 
analytically.

E.g. Isserlis/Wick's 
theorem

Mean/positivity

Local field



Effective stats model
Contractability ≈ entanglement in the TN      Average of copies of random TNs

Partition function of classical stats model

high entanglement

low entanglement

No local field

Phase transition point:



Details for averaging over tensors



Details for averaging over tensors

Contracting adjacent 
tensors introduces a 
scalar depending on the 
number of loops & lines 

Left

Right

Left Right



Details for averaging over tensors



Details for averaging over tensors



Details for averaging over tensors

Becomes 
ferromagnetic 
as D → ∞!



Details for averaging over tensors

Tend to be ferromagnetic (spins aligned)

Mixed boundary condition 
→ domain wall

Competition between 
boundary condition and 

magnetic field → disorder
Prefer the latter 

five configurations

Prefer first two 
configurationsTransition point:

             (no local field) 



Numerical simulation

We observed the same transition in finite-size simulation. We choose H >> W so 
the entropy saturates (H = 4W in our simulation).



iMPS - iMPO algorithm

iMPS simulation of the effective model

Overlap between left/right dominant eigenvectors of 
fixed-point iMPS

Roman Orus and Guifre Vidal, The iTEBD algorithm beyond 
unitary evolution, Phys. Rev. B 78, 155117 (2008)

low-ent.
high-ent.

[1] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, Andreas W. W. Ludwig, Entanglement Transitions from 
Holographic Random Tensor Networks, Phys. Rev. B 100, 134203 (2019)
[2] Ryan Levy, Bryan K. Clark, Entanglement Entropy Transitions with Random Tensor Networks, 
arXiv:2108.02225

μ = 0 case also relates to previous results: 



Role of positivity?

The “positivity” part is important 
to observe the transition! 

Or in other words, the rank-one 
states need to be “aligned”.

Does “rank-one”ness cause the complexity transition instead of positiveness?

(a) random rank-one (but not positive)

(b) random positive (but not rank-one)



Sign problem in QMC

sample 

error

estimate by

“sign problem”: exponential 
dependence on N caused
by

varying signs

sample                  

estimate by

error



“Sign problem” in TN:

Sign problem in random TN



Sign problem in random TN

rapidly vanishing

Sign problem is

Sign problem only disappears when            , where entries are mostly positive

independent of d

worse for large d



Part II: Positive bias makes tensor network contraction tracatable
            (arXiv:2410.05414)

We give a series of more rigorous results, including a provably “efficient” 
algorithm to contract slightly positive random tensor networks (same 
transition point).

Exact Approximate

Worst-case #P-hard [SWVC07]
Empirically hard

Average-case (             ) #P-hard [HHEG20]

Average-case + small 
positive bias (                  )

#P-hard [our result] Quasi-poly time algorithm 
[our result]

Complexity of (2D) tensor network contraction



Main theorem

Theorem (informal):  For a random 2D tensor network, if

then with high probability, there exists a quasi-polynomial time algorithm 
which approximates the TN contraction value up to arbitrary 1/poly(n) 
multiplicative error.

i.i.d. for all 
entries & all 
tensors.



Method overview

InterpolateEasy

all-one tensor

Hard

Easy to contract!



Method overview

Interpolate

For convenience later, introduce change of variable

and rescale the tensors. No effect on multiplicative error.

New definition

Easy Hard



Method overview

To interpolate from z = 0 to 1, we uses Barvinok’s 
method [Bar16]. It relies on two observations.

+ all other configs with four 

k-th derivative of g(z) at z = 0 can be 
computed brute-forcely in           time.

e.g.

Observation 2

Contracted TN is a degree-n random 
polynomial on z, denoted as g(z).

Observation 1



Barvinok’s method [Bar16]

Input: degree-n polynomial

Algorithm:

, now ε additive error

, ε multiplicative errorOutput:

Effectiveness depends on the roots of 

Originally designed for permanent

           accessible in          time

   , output       , that’s it!



Barvinok’s method [Bar16]

Roots of        are outside the           disk → small error

Run time           , quasi-poly



Barvinok’s method [Bar16]

A root of        is inside the           disk → error blows up!



Barvinok’s method via root-free path

Not many roots (e.g. O(1)) → can interpolate along a root-free path!

Both remain quasi-polynomial time.

Method 1 [Bar16]

Mapping the disk to a strip

…

Method 2 [EM18]

“Algorithmic” analytic continuation



Barvinok’s method on random tensor network

few roots find a root-free path quasi-poly algorithm



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

How to bound 
average number 
of roots?

Jensen’s formula

Jensen’s inequality

[EM18]



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field

Onsager’s solution [Ons44] for 
zero-field 2D ising model 
(finite-size variant [Kau49])



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

Onsager’s solution [Ons44] for 
zero-field 2D ising model 
(finite-size variant [Kau49])

for z ≲ 1

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field



Outlook

(Part I)
- Besides the stats model mapping, how to more intuitively 

understand the complexity transition?

(Part II)
- How to prove tractability with constant bond-dimension?

- Can one improve the interpolation method? 
- Interpolate from other rank-one tensors? (e.g. BP fixed point)
- Use better interpolations?

- Can the interpolation method be used in practice? (with some 
modifications & heuristics)


