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Sign problem and tensor networks

In quantum Monte Carlo (QMC) simulations, especially for fermions, “sign problem’
exponentially increases the number of samples needed.

It has often been narrated that tensor networks can circumvent the sign problem,
since by construction they do not depend on local basis choices.

We try to understand this aspect rigorously by studying:

tensor networks with controlled structure.



Tensor networks (TNs)

2D square-lattice graph with n vertices

Edges: ¢ € {1,...,d} , d is called bond-dimension
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The problems we study
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_ - i.i.d. for all
—% ~ N (i, 1) entries & all

T T tensors.
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Contracting a tensor network with random entries. Larger mean — more positive.

- Is the contraction easier when the mean increases?

- If yes, when does the contraction become easy/hard?



Part I: Sign problem in tensor network contraction
(arXiv:2404.19023)

We predicted the complexity transition point through an effective
classical statistical model, and numerically verified the transition.

——————————————————————————————————————————————————————————————————
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This transition happens much earlier than “sign problem” disappears.
In other words, the entries only need to be slightly positive.



Effective stats model

Contractability = entanglement in the TN

Increased bond-dimension



Effective stats model

Contractability = entanglement in the TN < Average of copies of random TNs
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Effective stats model

Contractability = entanglement in the TN < Average of copies of random TNs

I

Partition function of classical stats model

_____________________________

| Average of copies of
' random tensors can
be computed !
analytically.

E.g. Isserlis/Wick's i
theorem i

————————————————————————————————————————————————

Partition function of a ferromagnetic
Potts model with external field !
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Effective stats model

Contractability = entanglement in the TN < Average of copies of random TNs

I

Phase transition point: ;1d = 1 < Partition function of classical stats model




Details for averaging over tensors
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Details for averaging over tensors

Contracting adjacent
tensors introduces a
scalar depending on the
number of loops & lines
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Details for averaging over tensors
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Details for averaging over tensors
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Details for averaging over tensors
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Details for averaging over tensors
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Numerical simulation

We observed the same transition in finite-size simulation. We choose H >> W so
the entropy saturates (H = 4W in our simulation).

~ Wlog(D)




iIMPS simulation of the effective model

iIMPS - iMPO algorithm

Roman Orus and Guifre Vidal, The iTEBD algorithm beyond
unitary evolution, Phys. Rev. B 78, 155117 (2008)
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Overlap between left/right dominant eigenvectors of
fixed-point IMPS

(l1|AlTo)
(lo|Alro)

1) = V(TN

(li] = V! (AL)

u = 0 case also relates to previous results:

[1] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, Andreas W. W. Ludwig, Entanglement Transitions from
Holographic Random Tensor Networks, Phys. Rev. B 100, 134203 (2019)

[2] Ryan Levy, Bryan K. Clark, Entanglement Entropy Transitions with Random Tensor Networks,
arXiv:2108.02225
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Role of positivity?

Does “rank-one”ness cause the complexity transition instead of positiveness?
(@) random rank-one (but not positive)
% = % + U e N
(b) random positive (but not rank-one)

- (b).

The “positivity” part is important
to observe the transition!
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Or in other words, the rank-one
states need to be “aligned”.
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Sign problem in QMC
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Sign problem in random TN
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Sign problem in random TN

e—NAf L Zedge labeling ¢

Sign problem is

psS1/d: worse for large d
1/d S S1: independent of d

LS rapidly vanishing
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Part Il: Positive bias makes tensor network contraction tracatable
(arXiv:2410.05414)
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We give a series of more rigorous results, including a provably “efficient
algorithm to contract slightly positive random tensor networks (same
transition point).

Complexity of (2D) tensor network contraction

Exact Approximate
Worst-case #P-hard [SWVCO07]
Empirically hard
Average-case (/. — ()) #P-hard [HHEG20]
Average-case + small #P-hard [our result] Quasi-poly time algorithm

positive bias ( ;1 — 1 /d) [our result]



Main theorem

Theorem (informal): For a random 2D tensor network, if
pz1/d, dzn

then with high probability, there exists a quasi-polynomial time algorithm
which approximates the TN contraction value up to arbitrary 1/poly(n)
multiplicative error.

i.i.d. for all
%% ~ N, 1) entries & all
tensors.



Method overview

Easy Interpolate Hard
jt — 00 p=1/d
---------------------------------------------------------- TS S N N
N(p,1) = z + N0, 1) I I

all-one tensor
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Easy to contract!



Method overview

Easy Interpolate Hard
[ — 00 p=1/d
2=0] 2=
. . N 1|
For convenience later, introduce change of variable |z = d

_____________
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Method overview

______________________________________________

To interpolate from z = 0 to 1, we uses Barvinok’s . _'l’_ y |
method [Bar16]. It relies on two observations. | - N |

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Observation 1 Observation 2
Contracted TN is a degree-n random k-th derivative of g(z) at z = 0 can be
polynomial on z, denoted as g(z). L computed brute-forcely in ,“*) time.
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Barvinok’s method [Bar16]

Originally designed for permanent

degree-n polynomial g(z)

Input ,
9"(0) accessible in ") time
Output: g(1), € multiplicative error
f(z) =In(g(2)), now € additive error
i . ok f(0) D) e
. Algorithm: f() = f(1) =)~ output e/, that's it!
! k=0

Effectiveness depends on the roots of g(z)

_________________________________________________________________________________________________________



Barvinok’s method [Bar16]

Roots of ¢(z) are outside the |z| =1 disk — small error

——————————————————————————————————————

M =0 (In (’;))

.~ Run time »“"""), quasi-poly




Barvinok’s method [Bar16]

A root of g(z)is inside the |z| = 1disk — error blows up!

——————————————————————————————————————




Barvinok’s method via root-free path

Not many roots (e.g. O(1)) — can interpolate along a root-free path!

____________________________________________________________________________________________________

Both remain quasi-polynomial time.



Barvinok’s method on random tensor network

f(z) =In(g(2))
v s — fewroots — find a root-free path — quasi-poly algorithm




Barvinok’s method on random tensor network

fe)=Mnlo() . few roots find a root-free path quasi-poly algorithm
k (0 - —

L pw) PN ... — that successes with
f(l)Nf(l)—; o on average with high probability high probability




Barvinok’s method on random tensor network

/() = In(g(=)) few roots find a root-free path quasi-poly algorithm
' oy T — ... — that successes with
f(l)zf(l):; o on average with high probability high probability
How to bound E,[Ne1_s) < %Eg yﬁlog ( % ) dz] Jensen’s formula
average number — ' g
f roots? 1 9(2)| s |
of roots < 55 log (;éﬂzg 40 dz) Jensen’s inequality

[EM18]



Barvinok’s method on random tensor network

JE)=hlo) ~_ fewroots _ find aroot-free path _ ?huae}[sslhpc(zgsilgg::\tiqhm
F(1) ~ f(1) :Zf(;!(o) on average with high probability high probability
AN

How to bound _
average number — by upper-bounding £,

2
M‘ [EM18]
of roots?

9(0)




Barvinok’s method on random tensor network

f(z) = In(g(2)) few roots find a root-free path quasi-poly algorithm
D~ i -3 220 T onaverage  with high probability that successes with
4 2 high probability
AN
How to bound _ a(2) P
average number  — by upper-bounding £, %51 [EM18]

of roots?




Barvinok’s method on random tensor network

quasi-poly algorithm

J(=) = In(9(2)) few roots find a root-free path .
L pwy T — ... — that successes with
F(1) ~ f(1) :Z o on average with high probability high probability
AN
How to bound _ a(2) P
average number — by upper-bounding £, 40) [EM18]
of roots?

/

partition function of 2D
Eylg(2)]* = classical ising model with
local magnetic field!

- — 1 — zero magnetic field



Barvinok’s method on random tensor network

quasi-poly algorithm

J(=) = In(9(2)) few roots find a root-free path .
' oy T — ... — that successes with
f(l)zf(l)zz o on average with high probability high probability
AN
How to bound _ a(2) P
average number — by upper-bounding £, 40) [EM18]
of roots?

partition function of 2D
E,lg(z)]> = classical ising model with

local magnetic field! Onsager’s solution [Ons44] for

zero-field 2D ising model

y =1 zero magnetic field (finite-size variant [Kau49])



Barvinok’s method on random tensor network

quasi-poly algorithm

J(=) = In(9(2)) few roots find a root-free path .
< i0=31"0 T onaverage  with high probability  hat successes with
F)~ f(1) = Z u g gnp y high probability
o\
How to bound _ a(2) P
average number — by upper-bounding £, 40) [EM18]
f?
of roots*: O(1) forz<1

f

partition function of 2D
E,lg(z)]> = classical ising model with

local magnetic field! Onsager’s solution [Ons44] for

zero-field 2D ising model

y =1 zero magnetic field (finite-size variant [Kau49])



Outlook

(Part )
- Besides the stats model mapping, how to more intuitively
understand the complexity transition?

(Part Il)
- How to prove tractability with constant bond-dimension?

- Can one improve the interpolation method?
- Interpolate from other rank-one tensors? (e.g. BP fixed point)
- Use better interpolations?

- Can the interpolation method be used in practice? (with some
modifications & heuristics)



