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Background

Quantized tensor train (QTT) is a type of tensor network with linear
geometry, which represents an underlying function in a multi-scale

fashion.

It was found useful in many fields, including but not limited to:
- Representing bosonic systems [1]
- Image compression [2]
- Differential equations, e.g. Navier-Stokes [3], Vlasov-Poisson [4]
- Encoding orbitals for computational chemistry [5]

Also closely related to “entanglement structure” of quantum algorithms!
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Background

Recently it was found that discrete Fourier transform (DFT) can be
encoded as an efficient QTT [1].

This could be useful for many QTT applications since DFT is a
fundamental algorithm primitive.

This talk: recent results on constructing DFT in QTT format.

[1] JC, E.M. Stoudenmire, and Steven R. White, Quantum Fourier Transform Has Small Entanglement, PRX Quantum (2023) 4, 040318



Quantized Tenor Train: 1D functions

Efficient criteria: bond-dimension x = poly(n) or even y = O(1)

Space savings: 2" — O(ny?)



Quantized Tenor Train: operators
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Space savings: 2*" — O(ny?)

Similar scheme for multilinear map & high-dimensional functions



Discrete Fourier Transform
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Defined as the following matrix, where w = ¢ ~ and N =2"
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Discrete Fourier Transform

Can partition variables into binary strings:
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Notice: 01 is the most significant bit, but 71 is the least significant bit.

Why? Only this ordering provides us a low-rank QTT of DFT.
Normal ordering will give maximal QTT rank.



DFT in QTT

Main result: DFT can be approximated as low-rank QTT with small error
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Proof by:

1. Schmidt decomposition (Frobenius norm error bound) [1]

2. Interpolative decomposition (Frobenius norm + entry-wise error bound +
analytical construction) [2]

[1] JC, E.M. Stoudenmire, and Steven R. White, Quantum Fourier transform has small entanglement, PRX Quantum (2023) 4, 040318
[2] JC, Michael Lindsey, Direct interpolative construction of the discrete Fourier transform as a matrix product operator, arXiv:2404.03182 (2024)



Step 1: Recursive decomposition of DFT

DFT = products of smaller DFTs with some phase modifications
Closely related to the Cooley—Tukey algorithm (fast Fourier transform)
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where we introduced new variables: QTT representation!
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Step 2: Low-rank decomposition by Lagrange interpolation

Lagrange interpolation on shifted Chebyshev-Lobatto grids:
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Step 3: QTT with bounded Frobenius norm error

Bounded Frobenius norm error for every bond — there exists QTT with
controlled Frobenius norm error [1]
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Qualitatively same results in [2], except singular values are directly bounded
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How to construct such QTT?

1. TT-SVD (i.e. apply SVD sequentially on every bond) [1]
- Gives QTT with Frobenius norm error vn — 1Ex (quasi-optimal)
- Exponential time to construct

2. Expand DFT as n x n 2D tensor network and approximately contract [2]
- Hard to analyze error; accurate in practice
- O(n*K”) time to construct

1]
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N

3. Recursive interpolation [3]
- Controlled entry-wise error, but worse than optimal
- Entries have analytical expressions, in principle no need to construct
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Analytical construction by recursive interpolation

Define the m-th interpolative tensor:
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Interpolate the (m+1)-th interpolative tensor with the m-th one:
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Analytical construction by recursive interpolation

Gives QTT with translation-invariant sites and closed boundaries
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Numerics

Fix n=10, vary K
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Conclusion

- We proved that DFT can be represented as a low-rank QTT
- We gave an analytical construction through interpolative decomposition

Discussion

- Tighter bounds?
- Generalize to other operators?
- Applications of the analytical construction?
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