Encoding Discrete Fourier Transform as Quantized Tensor Train

Chris (Jielun) Chen

Joint work with Miles Stoudenmire, Steve White, Michael Lindsey

Yuehaw Khoo group meeting, UChicago 02/13/2024

Background

Quantized tensor train (QTT) is a type of tensor network with linear geometry, which represents an underlying function in a multi-scale fashion.

It was found useful in many fields, including but not limited to:

- Representing bosonic systems [1]
- Image compression [2]
- Differential equations, e.g. Navier-Stokes [3], Vlasov-Poisson [4]
- Encoding orbitals for computational chemistry [5]

Also closely related to "entanglement structure" of quantum algorithms!

^[1] Eric Jeckelmann, Steven R. White, *Density-matrix renormalization-group study of the polaron problem in the Holstein model*, Phys. Rev. B 57, 6376–6385 (1998) [2] Jose I. Latorre, *Image compression and entanglement*, quant-ph/0510031 (2005)

^[3] Nikita Gourianov, et.al., A quantum-inspired approach to exploit turbulence structures, Nature Computational Science 2, 30–37 (2022)

^[4] Erika Ye, Nuno F. G. Loureiro, *Quantum-inspired method for solving the Vlasov-Poisson equations*, Phys. Rev. E 106, 035208 (2022)

^[5] Nicolas Jolly, Yuriel Nunez Fernandez, Xavier Waintal, Tensorized orbitals for computational chemistry, 2308.03508 (2023)

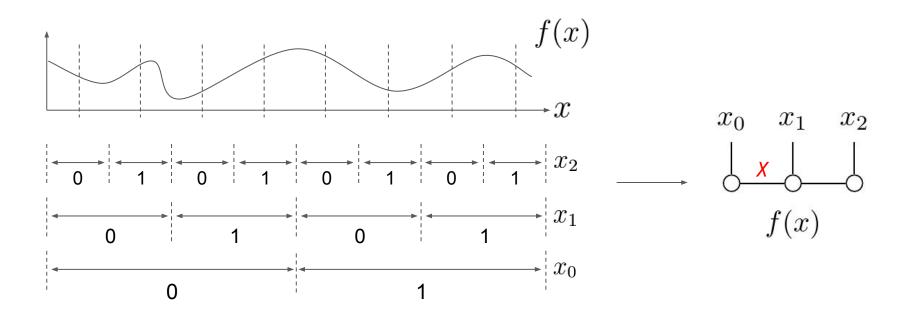
Background

Recently it was found that discrete Fourier transform (DFT) can be encoded as an efficient QTT [1].

This could be useful for many QTT applications since DFT is a fundamental algorithm primitive.

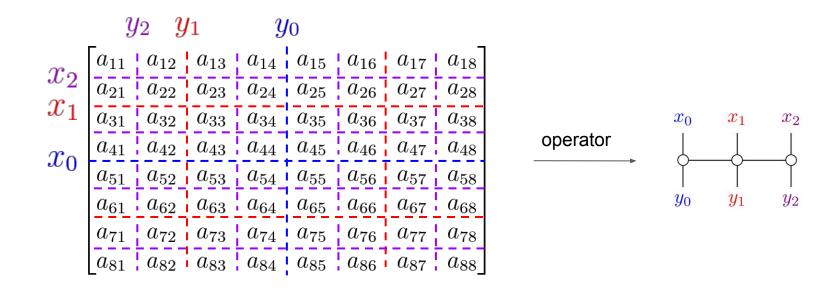
This talk: recent results on constructing DFT in QTT format.

Quantized Tenor Train: 1D functions



Efficient criteria: bond-dimension $\chi = \text{poly}(n)$ or even $\chi = O(1)$ Space savings: $2^n \rightarrow O(n\chi^2)$

Quantized Tenor Train: operators



Space savings: $2^{2n} \rightarrow O(n\chi^2)$

Similar scheme for multilinear map & high-dimensional functions

Discrete Fourier Transform

Defined as the following matrix, where $\omega = e^{-\frac{2\pi i}{N}}$ and $N = 2^n$

$$\mathbf{F}_{n}(s,t) = e^{-\frac{2\pi i s t}{N}} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{bmatrix}$$

Discrete Fourier Transform

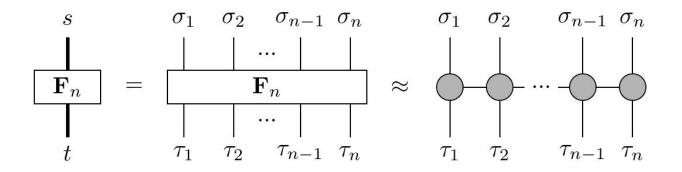
Can partition variables into binary strings:

Notice: σ_1 is the most significant bit, but τ_1 is the least significant bit.

Why? Only this ordering provides us a low-rank QTT of DFT. Normal ordering will give maximal QTT rank.

DFT in QTT

Main result: DFT can be approximated as low-rank QTT with small error



Proof by:

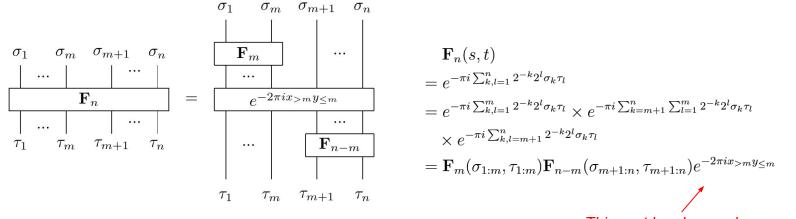
- 1. Schmidt decomposition (Frobenius norm error bound) [1]
- Interpolative decomposition (Frobenius norm + entry-wise error bound + analytical construction) [2]

[1] JC, E.M. Stoudenmire, and Steven R. White, *Quantum Fourier transform has small entanglement*, PRX Quantum (2023) 4, 040318
[2] JC, Michael Lindsey, *Direct interpolative construction of the discrete Fourier transform as a matrix product operator*, arXiv:2404.03182 (2024)

Step 1: Recursive decomposition of DFT

where we introduced new variables:

DFT = products of smaller DFTs with some phase modifications Closely related to the Cooley–Tukey algorithm (fast Fourier transform)

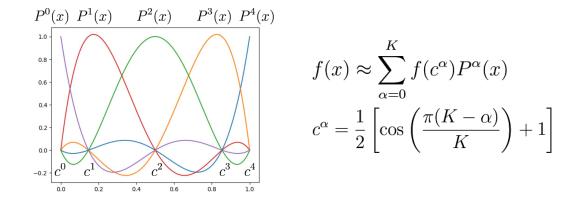


This part has low-rank decomposition, implying efficient QTT representation!

 $x_{>m} = \sum_{k=m+1}^{n} 2^{m-k} \sigma_k \in [0,1], \quad y_{\leq m} = \sum_{l=1}^{m} 2^{l-m-1} \tau_l \in [0,1]$

Step 2: Low-rank decomposition by Lagrange interpolation

Lagrange interpolation on shifted Chebyshev-Lobatto grids:



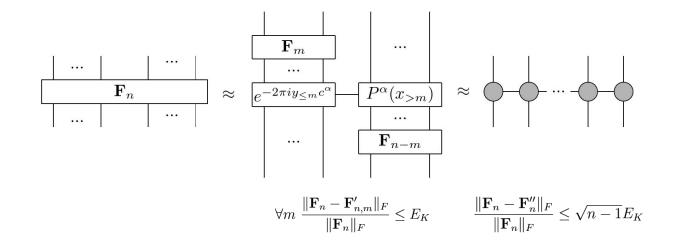
Entry-wise error from interpolation for our case:

Independent of n, m i.e. true for all sizes & all bonds

$$\|e^{-2\pi ix_{>m}y_{\leq m}} - \sum_{\alpha=0}^{K} e^{-2\pi iy_{\leq m}c^{\alpha}} P^{\alpha}(x_{>m})\|_{\infty} \leq \frac{4\left(\frac{\pi}{2}\right)^{K+1} e^{K} K^{-K}}{K - \frac{\pi}{2}} =: E_{K}$$

Step 3: QTT with bounded Frobenius norm error

Bounded Frobenius norm error for every bond \rightarrow there exists QTT with controlled Frobenius norm error [1]

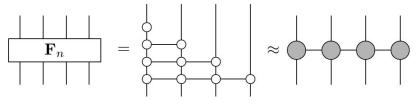


Qualitatively same results in [2], except singular values are directly bounded

[1] I. V. Oseledets, *Tensor-Train Decomposition*, SIAM Journal on Scientific Computing 2011 33:5, 2295-2317
[2] JC, E.M. Stoudenmire, and Steven R. White, *Quantum Fourier Transform Has Small Entanglement*, PRX Quantum (2023) 4, 040318

How to construct such QTT?

- 1. TT-SVD (i.e. apply SVD sequentially on every bond) [1]
 - Gives QTT with Frobenius norm error $\sqrt{n-1}E_K$ (quasi-optimal)
 - Exponential time to construct
- 2. Expand DFT as *n x n* 2D tensor network and approximately contract [2]
 - Hard to analyze error; accurate in practice
 - $O(n^2K^3)$ time to construct

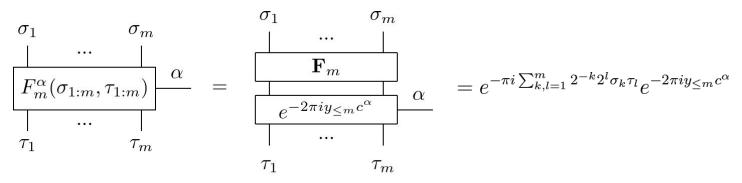


- 3. Recursive interpolation [3]
 - Controlled entry-wise error, but worse than optimal
 - Entries have analytical expressions, in principle no need to construct

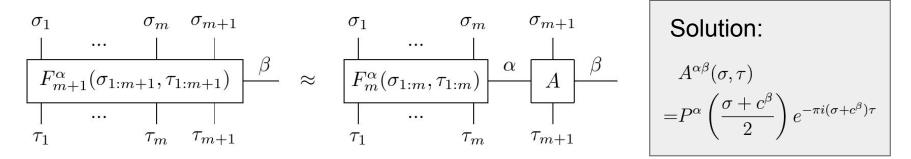
I. V. Oseledets, *Tensor-Train Decomposition*, SIAM Journal on Scientific Computing 2011 33:5, 2295-2317
JC, E.M. Stoudenmire, and Steven R. White, *Quantum Fourier Transform Has Small Entanglement*, PRX Quantum (2023) 4, 040318
JC, Michael Lindsey, *Direct interpolative construction of the discrete Fourier transform as a matrix product operator*, arXiv:2404.03182 (2024)

Analytical construction by recursive interpolation

Define the m-th interpolative tensor:

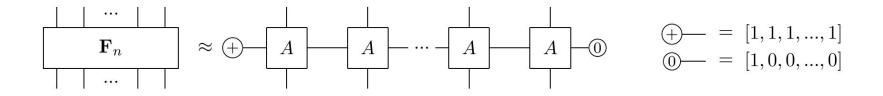


Interpolate the (m+1)-th interpolative tensor with the m-th one:



Analytical construction by recursive interpolation

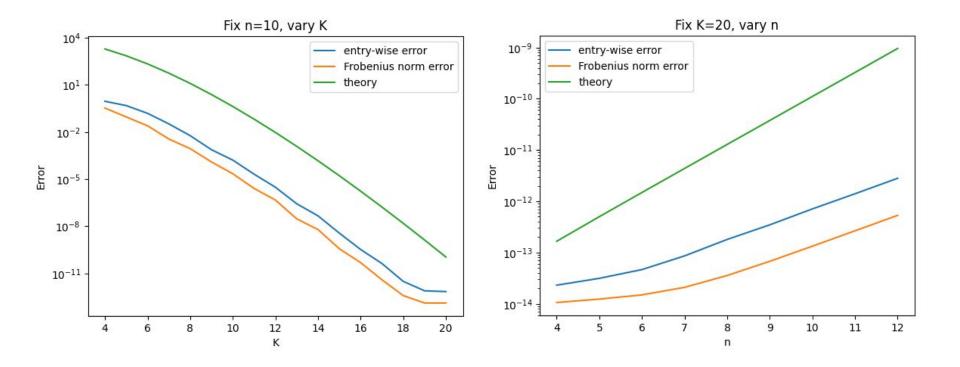
Gives QTT with translation-invariant sites and closed boundaries



Entry-wise error bound:

$$\max_{s,t} |\mathbf{F}_n(s,t) - \mathbf{F}''_n(s,t)| \leq \frac{\Lambda_K^{n-1} - 1}{\Lambda_K - 1} E_K \quad \text{Worse than optimal}$$
$$\Lambda_K \leq 1 + \frac{2}{\pi} \log(K+1) \quad \begin{array}{l} \text{Lebesgue constant for} \\ \text{Chebyshev-Lobatto grids} \end{array}$$

Numerics



Conclusion

- We proved that DFT can be represented as a low-rank QTT
- We gave an analytical construction through interpolative decomposition

Discussion

- Tighter bounds?
- Generalize to other operators?
- Applications of the analytical construction?

Acknowledgement

Many thanks to Yuehaw for the invitation Thanks for discussion: Sandeep Sharma, Garnet Chan