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Overview

The Quantum Fourier Transform (QFT) is one of the most important 
ingredients in quantum algorithms.

However, we will show that the core part of the QFT can only generate 
small entanglement on qubits.

We can then simulate the QFT classically using tensor networks, which 
can be faster than fast Fourier transform (FFT) in many practical cases!

But this is not a bad news for quantum computers, because it doesn’t 
mean the QFT can be simulated classically for arbitrary inputs (e.g. states 
in Shor’s algorithm). 
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Introduction to the QFT

5

The QFT has been widely used in quantum algorithms for provable 
speed-up over their classical counterparts. Examples are:

- Shor’s algorithm (factoring integers)
- Hidden subgroup problems
- Phase estimation
- Simulating quantum dynamics
- Quantum arithmetics
- Solving linear systems of equations
- …

The QFT’s power stems from its ability to find periodic structures of 
quantum states, which many quantum algorithms rely on to gain a 
provable speed-up.



Introduction to the QFT
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The QFT (over cyclic group       ) = the discrete Fourier transform (DFT) 
over Hilbert space spanned by n qubits. In terms of a matrix:



Introduction to the QFT
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The quantum circuit of       can be decomposed into two parts, a core 
part       and the bit-reversal part      . E.g. for 4-qubits:

bit-reversalcore part
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From now on, I will refer       as the QFT, and       as the DFT

Introduction to the QFT
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Main result (informal)
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The Schmidt coefficients (to be defined) of       and       differ significantly:

-       has exponentially decaying Schmidt coefficients for any partition 
of the operator, suggesting small entanglement

-       has uniform Schmidt coefficients for any partition of the operator 
[1, 2], suggesting maximal entanglement

That is, most entanglement in       comes from the bit reversal      .

[1] Tyson, Jon. “Operator-Schmidt decomposition of the quantum Fourier transform on C^N1 ⊗ C^N2.” Journal of Physics A 36 (2003)
[2] Nielsen, Michael A. et al. “Quantum dynamics as a physical resource.” Physical Review A 67 (2003)

Informal statement of our result:



Why do we consider Schmidt coefficients?
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[1] Nielsen, Michael A. et al. “Quantum dynamics as a physical resource.” Physical Review A 67 (2003)

There are many variants of an operator’s entanglement measure, e.g. see 
[1]. We specifically consider operator Schmidt decomposition of the QFT, 
because the Schmidt coefficients:

- Lower-bound non-local communications required to implement the 
operator.

- Indicate representability as an efficient tensor network.

- Often capture the maximal entanglement the operator can generate 
on a bipartite (mixed) quantum state.

      is very non-local and can generate large entanglement on subsystems.



An Operator Schmidt Decomposition of a unitary matrix acting on a bipartite 
systems   is a decomposition of the form:

where:

(only apply to unitary)-

-

- and
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- is the Schmidt rank, are the Schmidt coefficients

Operator Schmidt decomposition: definition



This is equivalent as the singular value decomposition (SVD). We first 
reshape the unitary into a matrix in the vertical direction, and apply SVD on it.
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Operator Schmidt decomposition: definition
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Operator Schmidt decomposition example: SWAP

The operator Schmidt decomposition of a SWAP gate is the sum of paulis.

It has maximal Schmidt rank and uniform Schmidt coefficients!

This explains why the bit-reversal operator has high operator entanglement!



Main result (formal)

Consider the QFT operator        . By partitioning the Hilbert space into      
with qubits     to    , and      with qubits  to     ,     has the operator 
Schmidt decomposition:
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The main theorem of our paper:

It then follows that for     , the Schmidt coefficients  satisfy:

Independent of the number of qubits (n) & partition of the system (j)!

Exponentially large Schmidt-rank
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A rough picture

- The QFT has high Schmidt-rank but limited “correlation length”.

- Require only few bipartite communications to accurately approximate the 
operator. 

Most communications 
are “truncatable”



Implications

No. 

- Classical stimulability requires both operator and states to have small 
entanglement. E.g. Shor’s algorithm has exponentially expensive state 
before QFT.

- Even without knowing the QFT’s low entanglement, early results already 
showed (approximate) QFT is efficiently simulable if input circuit has limited 
interaction range and log depth [1] or log bubble width [2]. Semi-classical 
QFT is also efficiently simulable [3].

Does the result pose any complexity hierarchy issues?

[1] Nadav Yoran, Anthony J. Short, “Efficient classical simulation of the approximate quantum Fourier transform” Phys. Rev. A 76, 042321 (2007)
[2] Dorit Aharonov, Zeph Landau, Johann Makowsky, “The quantum FFT can be classically simulated” arxiv-0611241
[3] Daniel E. Browne, “Efficient classical simulation of the semi-classical Quantum Fourier Transform”, New J. Phys. 9 146 (2007).



Implications

Does it tell anything new on implementing the QFT on a quantum computer?

Perhaps?

- Generally low entanglement implies fewer resources & more robust to noise.

- However, some qubit architectures may not favor input & output to have 
different qubit ordering.

- Not clear whether it implies lower circuit depth since any QFT with 
approximation error below 1/10 requires at least log(n) depth [1].

- May imply an underlying exponentially-decaying Hamiltonian, but hard to find 
(to be explained in details later)

[1] Richard Cleve, John Watrous, “Fast parallel circuits for the quantum Fourier transform”, arXiv:quant-ph/0006004



Implications

Does it tell anything new on the classical Fourier transform?

Yes!

- With the low-entanglement nature, simulating the QFT can gain speed-up 
over FFT in many classical algorithms!

- If input is certain types of tensor networks, almost always favor over FFT.

- If input is a vector, may still gain advantage if it’s compressible into certain 
tensor network.

 (More details later!)



Outline

- Introduction

- Main result

- Implications 

- Proof methods

- QFT tensor network

- Outlook



Proof methods: overview

The underlying mathematical reason for the exponential decay of the 
QFT’s Schmidt coefficients can be understood through 3 steps:

1.        has a generalized recursive circuit, from which we can see 
that only phase gates are relevant to Schmidt coefficients.

2. From the phase gates we find that the Schmidt coefficients of         
are equivalent to singular values of the top-left submatrices of the 
DFT matrix (i.e.        )

3. The submatrices of the DFT matrix are known be approximately 
low-rank. They are extensively studied in signal processing as the 
spectral concentration problem.
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Step 1: Generalized recursive QFT circuit
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Standard recursive circuit Generalized recursive circuit

[1] Richard Cleve, John Watrous, “Fast parallel circuits for the quantum Fourier transform”, arXiv:quant-ph/0006004



Because the two smaller QFT are local unitaries (with respect to the 
partition), only the central part          is relevant to the Schmidt coefficients.

Step 1: Generalized recursive QFT circuit
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Schmidt coefficients 
only relevant to this part



Step 1: Analyzing the central part
       is diagonal in the computational basis, and its matrix elements are 
product of phases conditioned on bit values of two registers        :

Notice two 
registers are 
labeled in the 
opposite order

25



Step 1: Analyzing the central part
The overall phase can be simplified to only dependent on the decimal 
values of two registers:
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Want to show this phase is 
related to the DFT’s 
submatrix (later in step 2)



Step 1: Summary

To summarize, for step 1 we have:

1. The QFT operator       can be decomposed as follows, where 

2. The Schmidt coefficients of        at cut j is the same as those of         at cut j 
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Step 2: The DFT submatrix

The non-zero Schmidt coefficients of    are equivalent to the singular values of a 
submatrix of the DFT:
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Step 3: The spectral concentration problem
The submatrix of the DFT matrix are known to be approximately low-rank. They 
relate to the spectral concentration problem [1], which has been extensively studied 
in signal processing. The original problem considers the discrete-time Fourier 
transform (DTFT), where in our case we use the DFT.

DTFT

[1] D. Slepian et.al., Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty — I - V
[2] Credit: MIT OpenCourseWare, Introduction To Neural Computation, Lecture 13
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Spectral concentration problem: Find a strictly localized sequence [-N’/2, N’/2] whose discrete-time 
Fourier Transform is maximally localized within the a finite window [-W,W] relative to the frequency 
periodic window [-1/2, 1/2]. The solution sequences are known as discrete prolate spheroidal 
sequences (DPSSs).

[2]



Step 3: The spectral concentration problem

In the DFT version of the spectral concentration problem, instead of constrained to a 
strictly localized time sequence, we constrained it to be localized relative to a 
periodic window. This can be viewed as discretizing the frequency domain.

Spectral concentration problem (DFT ver.): Find a localized sequence [-N’/2,N’/2] relative to a 
periodic window [-N/2, N/2], whose discrete Fourier Transform is maximally localized within the a 
finite window [-W,W] relative to the frequency periodic window [-1/2, 1/2] with N sample points. The 
solution sequences are known as periodic discrete prolate spheroidal sequences (P-DPSSs).

30

DFT



Step 3: The spectral concentration problem

With some analysis, one can show that solving the spectral concentration problem 
corresponds to solving the singular value equation of the DFT’s top-left submatrix. 

31

top-left submatrix of the DFT matrix



For an               submatrix of the               DFT, the 
singular values have a clustering behavior [1]:

32
[1] Edelman, A et. al., The Future Fast Fourier Transform?

[1]

Step 3: The spectral concentration problem

exponential decay
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Step 3: The spectral concentration problem

Remember for the QFT’s schmidt coefficients, they are singular values of 
the                  submatrix of the               DFT

only one singular value is close to 1, independent of the choice of j, n!
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Step 3: The spectral concentration problem

To prove rigorous exponential decaying bounds:

[1] Santhosh Karnik et. al., “Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences”, 
arXiv:2006.00427
[2 M. Boulsane et. al., “Discrete Prolate Spheroidal Wave Functions: Further spectral analysis and some related applications”, arXiv:1905.08354

We adopt techniques from [1, 2], which employs the decay property of 
half-order Bessel functions.

Audience interested in details shall refer to our paper!



35

Proof summary

To summarize:

- The Schmidt coefficients of the QFT are singular values of the DFT’s 
submatrix.

- The DFT’s submatrix is related to the spectral concentration problem.

- Spectral concentration has decaying solutions (singular values), 
corresponding to the QFT’s decaying Schmidt coefficients.

- The upper-bounds are independent of the number of qubits and the 
partition of the system.
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Relation to the area law

It’s still not intuitive why the QFT circuit with long-range gates and non-constant 
depth can have small entanglement. Can we interpret the QFT as a physical 
process, i.e. evolving under some Hamiltonian with constant time, and 
understand the low-entanglement from there?
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Relation to the area law

The exponential decay of the QFT’s Schmidt coefficients suggests that it 
falls into this category, is it true?

Area law for dynamics: A Hamiltonian on a one-dimensional lattice with 
interaction decaying faster than   has a constant entangling rate [1,2]. 

In other words, when evolving an arbitrary 1D system with such 
Hamiltonian, the rate of change of the system’s entanglement entropy 
does not increase with system size.

[1] Van Acoleyen, Karel et al. “Entanglement rates and area laws.” Physical review letters 111 17 (2013): 170501
[2] Gong, Zhe-Xuan et al. “Entanglement Area Laws for Long-Range Interacting Systems.” Physical review letters 119 5 (2017): 050501
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Explicitly solving the QFT’s Hamiltonian is a challenging task, because the 
Hadamard gates and controlled phase gates do not commute. 

Relation to the area law

Problematic!
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However, recall that the Schmidt coefficients only depend on phase gates. 
Therefore, if we remove all the H gates, the Schmidt coefficients will be 
invariant for any cut! In fact, we can show even more: any bipartite 
entanglement measure (under the LOCC principle) will remain invariant 
from removing H gates. 

Relation to the area law
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Relation to the area law

Hamiltonian with exponentially 
decaying interaction

This means the Hamiltonian for the QFT without H gates can be used to 
determine the entanglement structure of the QFT itself too. It turns out this 
Hamiltonian has exponentially decaying interaction, which is pseudo-local! 
Therefore, it will only generate constant amount of entanglement regardless 
of the system size, thus so do the QFT!
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The QFT tensor network and matrix product operator
The QFT’s small entanglement implies that it has an efficient tensor network 
representation, in particular an Matrix Product Operator (MPO) 
representation, i.e. a QFT-MPO. To find it, we first consider decomposing the 
controlled phase gates into low-rank local tensors:
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This allows the QFT circuit to be represented as a compact tensor network, 
for which we call the QFT-TN:

The QFT tensor network and matrix product operator
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The QFT tensor network and matrix product operator

To efficiently construct the QFT-MPO, we can view the QFT-TN as a series of 
MPOs and apply any MPO x MPO algorithm with bond-dimension kept up to a 
constant. We use the zip-up algorithm [1] since it’s both fast and stable in our 
case.

[1]  E M Stoudenmire and Steven R White, “Minimally entangled typical thermal state algorithms, 2010 New J. Phys. 12 055026
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Assume we set the bond-dimension of the QFT-MPO to     , the contraction 
algorithm will generally have:

2 4 6 8

6 0.0237328 8.05738 e-7 1.58873 e-12 2.78383 e-16

7 0.0327034 2.33700 e-6 1.35423 e-11 3.69769 e-16

8 0.0416221 4.22659 e-6 4.64780 e-11 8.20772 e-17

Less than machine precision; 
essentially exact!

Contraction time & error of the QFT-MPO

Some numerics on the errors                                :

- time complexity ~    (around one second for 50 qubits)
- total truncation error ~

- For fixed error, bond-dimension grows sub-logarithmically. 
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Fourier transform through the QFT-MPO

Our QFT-MPO is efficient enough to be classically practical! i.e. a “superfast” 
classical Fourier transform

- If the input is an MPS with bond-dimension       , applying the QFT-MPO 
has linear complexity                      .

- If the input is a vector of length                , converting it to an MPS using 
randomized SVD takes                     . Compared to FFT with time                                          

                                , still has advantage if        is sub-linear!

- Can be even faster using more efficient conversion methods, e.g. 
Tensor-train cross-interpolation [1].

[1] S. Dolgov, D. Savostyanov, Computer Physics Communications Volume 246, January 2020, 106869
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Benchmark: QFT vs. FFT
Here are some benchmarks ran on a personal computer. For compressible 
data we can already see advantage at around 18 qubits!
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Many classical applications!

Operations with FFT become cheap in MPS, can be applied to quantum 
chemistry, quantum dynamics, differential equations, etc. (work in progress)

- Fourier interpolation

- Convolution

- Laplacian

- Split-operator

- …
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Many classical applications!

There’s evidence that bitwise-encoding of functions through MPS/MPO is 
very powerful. Fourier transform is an addition to this family! Can combine 
all of them to do fast classical computation. Some examples:

- Many functions have explicit efficient construction as small-rank MPS 
[1], including: cos(x), sin(x), exp(x), finite-order polynomials, etc.

- Self-similar functions generally have small bond-dimension.

- There’s evidence that all Lipschitz-continuous functions have small 
bond-dimension [2].

- Bitwise operations & finite state machine can be directly converted to 
efficient MPO, e.g. addition, shifting, etc.

[1] I. V. Oseledets, “Constructive Representation of Functions in Low-Rank Tensor Formats”, Constructive Approximation volume 37, (2013)
[2] Griebel, M., Harbrecht, H. Analysis of Tensor Approximation Schemes for Continuous Functions. Found Comput Math 23, 219–240 (2023)
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Side note: the approximate QFT

A natural question to ask is whether the the same low-rank structure applies 
to the approximate QFT (AQFT), which is defined by removing the 
long-range controlled-phase gates.
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Side note: the approximate QFT

Numerical simulations suggest that MPOs for the AQFTs have higher 
bond-dimension [1]! The low-rank structure is a feature to the QFT’s full 
circuit. No rigorous argument for this yet… 

[1] Woolfe, Kieran J. and Hill, Charles D. and Hollenberg, Lloyd C. L., arXiv:1406.0931
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Future outlook

1. Does this imply a better implementation of the QFT on a QC?
- Converting the QFT-MPO to a quantum circuit
- Time-evolving an exponentially-decaying Hamiltonian
- …

2. Why does AQFT seem to have higher entanglement?

3. Can we generalize it to the QFT over more general groups?

4. Can we find more classical applications? Can we categorize a general 
class of problems for the QFT-MPO to be useful?

5. Can we connect the QFT-MPO to other “faster” Fourier transform, e.g. the 
sparse Fourier transform [1]?

[1] https://groups.csail.mit.edu/netmit/sFFT/index.html
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