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Tensor networks (TN)

2D square-lattice graph with n vertices

Edges: ¢ € {1,...,d} , d is called bond-dimension
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Tensor networks (TN)

Contracting a tensor network is a common
computational task with many applications.
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Complexity of (2D) tensor network contraction
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Worst-case #P-hard [SWVCO07]
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Main theorem

Theorem (informal): For a random 2D tensor network, if
pz1/d, dzn

then with high probability, there exists a quasi-polynomial time algorithm
which approximates the TN contraction value up to arbitrary 1/poly
multiplicative error.

i.i.d. for all
%% ~ N, 1) entries & all
tensors.



Motivation

Rigorous study for how sign structure influence contraction complexity.
- Folklore: “positivity makes TN easier to contract”.
- Numerical simulations: the complexity drops significantly when the TN is only
“slightly positive”, and there is a phase transition point.

[GC22] [CJHS24]

5 1074 \

5 — 16

o

= 107° 4 \ . —— 3

5 .

£ j0e \\\ —— 84
-— 12

10,0 -
i X

e
7
14 /4
/

|

]
(S)

o — [\ w 5N ot (=] ~
T T ? b

The threshold 1« ~ 1/d in our result matches the phase transition point predicted in
[CJHS24], even though the contraction method is completely different!



Method overview

Easy Interpolate Hard
jt — 00 p=1/d
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Easy to contract!



Method overview

Easy Interpolate Hard
[ — 00 p=1/d
2=0] 2=
. . N 1|
For convenience later, introduce change of variable |z = d
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Method overview

______________________________________________

To interpolate from z = 0 to 1, we uses Barvinok’s . _'l’_ y |
method [Bar16]. It relies on two observations. | - N |

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Observation 1 Observation 2
Contracted TN is a degree-n random k-th derivative of g(z) at z = 0 can be
polynomial on z, denoted as g(z). L computed brute-forcely in ,“*) time.
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Barvinok’s method [Bar16]

Originally designed for permanent

degree-n polynomial g(z)

Input ,
9"(0) accessible in ") time
Output: g(1), € multiplicative error
f(z) =In(g(2)), now € additive error
i . ok f(0) D) e
. Algorithm: f() = f(1) =)~ output e/, that's it!
! k=0

Effectiveness depends on the roots of g(z)

_________________________________________________________________________________________________________



Barvinok’s method [Bar16]

Roots of ¢(z) are outside the |z| =1 disk — small error

——————————————————————————————————————

M =0 (In (’;))

.~ Run time »“"""), quasi-poly




Barvinok’s method [Bar16]

A root of g(z)is inside the |z| = 1disk — error blows up!

——————————————————————————————————————




Barvinok’s method via root-free path

Not many roots (e.g. O(1)) — can interpolate along a root-free path!

____________________________________________________________________________________________________

Both remain quasi-polynomial time.



Barvinok’s method on random tensor network

f(z) =In(g(2))
v s — fewroots — find a root-free path — quasi-poly algorithm
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Barvinok’s method on random tensor network

/() = In(g(=)) few roots find a root-free path quasi-poly algorithm
' oy T — ... — that successes with
f(l)zf(l):; o on average with high probability high probability
How to bound E,[Ne1_s) < %Eg yﬁlog ( % ) dz] Jensen’s formula
average number — ' g
f roots? 1 9(2)| s |
of roots < 55 log (;éﬂzg 40 dz) Jensen’s inequality

[EM18]



Barvinok’s method on random tensor network

JE)=hlo) ~_ fewroots _ find aroot-free path _ ?huae}[sslhpc(zgsilgg::\tiqhm
F(1) ~ f(1) :Zf(;!(o) on average with high probability high probability
AN

How to bound _
average number — by upper-bounding £,

2
M‘ [EM18]
of roots?
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Barvinok’s method on random tensor network

f(z) = In(g(2)) few roots find a root-free path quasi-poly algorithm
D~ i -3 220 T onaverage  with high probability that successes with
4 2 high probability
AN
How to bound _ a(2) P
average number  — by upper-bounding £, %51 [EM18]

of roots?




Barvinok’s method on random tensor network

quasi-poly algorithm

J(=) = In(9(2)) few roots find a root-free path .
L pwy T — ... — that successes with
F(1) ~ f(1) :Z o on average with high probability high probability
AN
How to bound _ a(2) P
average number — by upper-bounding £, 40) [EM18]
of roots?
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partition function of 2D
Eylg(2)]* = classical ising model with
local magnetic field!

- — 1 — zero magnetic field



Barvinok’s method on random tensor network
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Barvinok’s method on random tensor network

quasi-poly algorithm

J(=) = In(9(2)) few roots find a root-free path .
< i0=31"0 T onaverage  with high probability  hat successes with
F)~ f(1) = Z u g gnp y high probability
o\
How to bound _ a(2) P
average number — by upper-bounding £, 40) [EM18]
f?
of roots*: O(1) forz<1

f

partition function of 2D
E,lg(z)]> = classical ising model with

local magnetic field! Onsager’s solution [Ons44] for

zero-field 2D ising model

y =1 zero magnetic field (finite-size variant [Kau49])



Fully positive TN

What can we say about approximating a fully positive TN?

Brief summary of two results:

1.  Approximating a positive TN up to very large multiplicative error is
StogMA-hard.

2. Approximating a positive TN with additive error bounded by the
product of 1-norm of each tensor is BPP-complete.

Approximating an arbitrary TN with additive error bounded by the
product of 2-norm of each tensor is BQP-complete. [AL10]



Outlook

We showed that there’s a quasi-polynomial time classical algorithm to
approximately contract a slightly positive tensor network.

- How to prove tractability with constant bond-dimension?

- Can one improve the method?
- Interpolate from other rank-one tensors? (e.g. BP-fixed point)
- Use better interpolations?

- Can the method be used in practice? (with some modifications &
heuristics)



