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Tensor networks (TN)

Edges: , d is called bond-dimension

Contracted value:

2D square-lattice graph with n vertices

Vertices: , order-4 tensor

Edge labeling: an assignment of values to all edges

e.g.



Tensor networks (TN)

Many-body physics Simulating quantum circuits Classical stat mech

…

Contracting a tensor network is a common 
computational task with many applications.
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Main theorem

Theorem (informal):  For a random 2D tensor network, if

then with high probability, there exists a quasi-polynomial time algorithm 
which approximates the TN contraction value up to arbitrary 1/poly 
multiplicative error.

i.i.d. for all 
entries & all 
tensors.



Rigorous study for how sign structure influence contraction complexity.
- Folklore: “positivity makes TN easier to contract”.

Motivation

[GC22] [CJHS24]

- Numerical simulations: the complexity drops significantly when the TN is only 
“slightly positive”, and there is a phase transition point.

The threshold              in our result matches the phase transition point predicted in 
[CJHS24], even though the contraction method is completely different!



Method overview

InterpolateEasy

all-one tensor

Hard

Easy to contract!



Method overview

Interpolate

For convenience later, introduce change of variable

and rescale the tensors. No effect on multiplicative error.

New definition

Easy Hard



Method overview

To interpolate from z = 0 to 1, we uses Barvinok’s 
method [Bar16]. It relies on two observations.

+ all other configs with four 

k-th derivative of g(z) at z = 0 can be 
computed brute-forcely in           time.

e.g.

Observation 2

Contracted TN is a degree-n random 
polynomial on z, denoted as g(z).

Observation 1



Barvinok’s method [Bar16]

Input: degree-n polynomial

Algorithm:

, now ε additive error

, ε multiplicative errorOutput:

Effectiveness depends on the roots of 

Originally designed for permanent

           accessible in          time

   , output       , that’s it!



Barvinok’s method [Bar16]

Roots of        are outside the           disk → small error

Run time           , quasi-poly



Barvinok’s method [Bar16]

A root of        is inside the           disk → error blows up!



Barvinok’s method via root-free path

Not many roots (e.g. O(1)) → can interpolate along a root-free path!

Both remain quasi-polynomial time.

Method 1 [Bar16]

Mapping the disk to a strip

…

Method 2 [EM18]

“Algorithmic” analytic continuation



Barvinok’s method on random tensor network

few roots find a root-free path quasi-poly algorithm
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Barvinok’s method on random tensor network

How to bound 
average number 
of roots?

Jensen’s formula

Jensen’s inequality

[EM18]



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field

Onsager’s solution [Ons44] for 
zero-field 2D ising model 
(finite-size variant [Kau49])



few roots
on average

find a root-free path
with high probability

quasi-poly algorithm
that successes with 
high probability

Barvinok’s method on random tensor network

[EM18]by upper-bounding
How to bound 
average number 
of roots?

Onsager’s solution [Ons44] for 
zero-field 2D ising model 
(finite-size variant [Kau49])

for z ≲ 1

partition function of 2D 
classical ising model with 
local magnetic field!

zero magnetic field



Fully positive TN

What can we say about approximating a fully positive TN?

1. Approximating a positive TN up to very large multiplicative error is 
StoqMA-hard.

2. Approximating a positive TN with additive error bounded by the 
product of 1-norm of each tensor is BPP-complete.

Approximating an arbitrary TN with additive error bounded by the 
product of 2-norm of each tensor is BQP-complete. [AL10]

Brief summary of two results:



Outlook

We showed that there’s a quasi-polynomial time classical algorithm to 
approximately contract a slightly positive tensor network.

- How to prove tractability with constant bond-dimension?

- Can one improve the method? 
- Interpolate from other rank-one tensors? (e.g. BP-fixed point)
- Use better interpolations?

- Can the method be used in practice? (with some modifications & 
heuristics)


