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Entanglement is one of the most important feature in 
quantum physics. (2022 Nobel Prize in Physics)

These topics often consider physical (non-)locality:

Often studied in the context of:
- Many-body physics
- Quantum cryptography
- Information theory
- …
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However, in quantum algorithms, physical qubits store 
information “digitally”:

What happens to the entanglement there?

i.e. what properties of f affect the state’s entanglement?

No notion of 
physical locality!
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What properties of f affect the state’s entanglement?

Answering this question will help:

Quantized Tensor 
Train (QTT)

2. Design quantum-inspired classical algorithms.

Entanglement

Quantum 
Advantage?

Classically 
doable

Good classical 
algorithm by just 
“simulation”

1. Understand when might quantum algorithms 
beat classical (tensor network) algorithms.
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Focus on QTT representations 
of functions & operators, 
rather than QTT algorithms
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Notations: bra-ket & entanglement

What I meant by “entanglement”:

Schmidt 
decomposition

 = SVD

Schmidt rank ≈ entanglement

or some measure on how fast 
singular values decay
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Tensor Contraction

tensornetwork.org

Notations: tensor network
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Quantized Tenor Train: (very brief) history

1990s: Density Matrix Renormalization 
Group, Matrix Product State

2009: Tensor Train

2010s: Quantized Tensor Train

2000s: Tensor Networks

Condensed matter physics Applied Math

Independently developed 
from two communities.

Many things about 
TT/QTT already known 
by physicists, but also 
many new things from 
math perspective!



Quantized Tenor Train for functions

0 1 0 1 0 1 0 1

0 1 0 1

0 1

Efficient criteria: bond-dimension χ = poly(n) or even χ = O(1)

Space savings:

χ
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operator

2D function

Quantized Tenor Train for operators & 2D functions

Similar scheme for multilinear map & high-dimensional function

Space savings:

subtlety with 
ordering…
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Efficient QTT functions: exp(x)

exp(x) is a product of exponentials of individual bits:

which corresponds to a χ = 1 QTT:
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Efficient QTT functions: cos(x) & sin(x)

cos(x) & sin(x) = a sum of two exponentials:

which corresponds to a χ = 2 QTT:

Generally: 
χ ≤ #Fourier 
coefficients

(canonical polyadic decomposition)
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Efficient QTT functions: polynomials (1st order)

First-order polynomial:

χ = 2 QTT format:

Want to construct QTT state       s.t. 

Solution:
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Efficient QTT functions: polynomials (2nd order)

Second-order polynomial:

Corresponding to a χ = 3 QTT format:

In the first-order example we defined s.t.

Extending to second order:
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Efficient QTT functions: polynomials (higher order)

χ = k+1

Extending to higher order:
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Efficient QTT functions: polynomials (general coefficients)

Boundary tensor determines polynomial coefficients:

χ = k+1
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Efficient QTT functions: polynomials (finite state machine)

Can be viewed as a finite state machine.

Crosswhite, Bacon, Phys. Rev. A 78, 012356 (2008)
Crosswhite, Doherty, Vidal, Phys. Rev. B 78, 035116 (2008)
Motruk, Zaletel, Mong, Pollmann, Phys. Rev. B 93, 155139 (2016)
…

Related: Hamiltonian MPO as FSM
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Efficient QTT functions: Gaussian

QTT for             has error upper-bounded by ~ Dolgov, Khoromskij, Oseledets, 
SIAM (2012), 34, 6

Numerical experiments showed for almost all α,  χ = 
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https://epubs.siam.org/doi/10.1137/120864210#con1
https://epubs.siam.org/doi/10.1137/120864210#con2


Efficient QTT functions: Gaussian

Hard to write out each QTT site, but can contract an n × n tensor network
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The QTT can be obtained directly from a Ripple-carry adder circuit:

Efficient QTT operators: addition

a b cin s cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

χ = 2

Addition is defined to be the following linear map:

Full adder truth table
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Efficient QTT operators: addition

Boundary tensors determines modulation:

Building block for 
many operators!
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Efficient QTT operators: subtraction

Subtractor in QTT = reshaped adder in QTT:

χ = 2

Subtraction is defined to be the following linear map:
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Efficient QTT operators: convolution

It turns out convolution in QTT = addition in QTT: 

circular convolution = modulo adder

χ = 2

Convolution is defined as the linear map:
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Efficient QTT operators: shift matrix

A (non-)circular shift matrix is defined as:

Corresponding to adding index by j:

χ = 2
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Efficient QTT operators: Toeplitz matrix

A Toeplitz matrix has the form:

Corresponding to the sum:
χ ≤ 2χ(    ) + 2χ(       ) 

Appear frequently in signal 
processing, numerical analysis, 
differential equations…

Small χ for e.g. 
banded Toeplitz
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Efficient QTT operators: circulant matrix

A circulant matrix has the form:

Corresponding to circular convolution with vector :

χ ≤ 2χ(   ) 

Special case of Toeplitz

Diagonalizable by discrete 
Fourier transform
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Efficient QTT operators: discrete Fourier transform

Numerics suggest χ = 8 gives error below          .

Discrete Fourier transform (DFT):

i.e.  χ grows sub-logarithmically to maintain a constant global error.

JC, Stoudenmire, White, 
arXiv:2210.08468 
(accepted to PRX 
quantum)

DFT is well-approximated by a QTT with error                         . 

reversed 
ordering is 
important!
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Efficient QTT operators: discrete Fourier transform

Why is DFT compressible in QTT:   

DFT’s QTT rank DFT’s submatrix rank
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Efficient QTT operators: discrete Fourier transform

For an               submatrix of the               DFT, its 
effective rank is very small.

[1]
exponential decay

[1] Edelman, A et. al., The Future Fast Fourier Transform?

Singular 
values
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Efficient QTT operators: derivatives

Option 1: finite difference method 

Option 2: diagonalization by DFT

χ ≤ 2(FDM order + derivative order)

 χ ≤ χ(DFT)^2 * (derivative order + 1)
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Efficient QTT operators: integral

First order approximation to the integral:

Corresponding to inner product with χ = 1 QTT:
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Efficient QTT operators: integral with variable range

Integral with variable range:

The matrix corresponds to a χ = 2 QTT:

Efficient QTT for e.g.
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Other efficient QTT in literature

Wavelets as QTT
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Image Compression with QTT
Latorre, Image compression and entanglement, arXiv:quant-ph/0510031, 2005

Oseledets Tyrtyshnikov, Algebraic 
Wavelet Transform via Quantics 
Tensor Train Decomposition

Shinaoka, Wallerberger, Murakami, Nogaki, Sakurai, Werner, and 
Kauch, Multiscale Space-Time Ansatz for Correlation Functions 
of Quantum Systems Based on Quantics Tensor Trains

Green’s functions of quantum 
many-body systems as QTT

…



QTT can embed both very smooth or very sharp functions

Small rank Small rank

#Fourier coeffs

Smoothness

Delta-functionUniform distribution Exponential cuspsLipschitz-continuous functions

Outlier: Gaussian?

 smoothness?

Major open question: when is QTT efficient in general?

Some rigorous results, e.g. classical 
Besov smoothness implies QTT
Ali & Nouy, Constructive Approximation volume 
58, pages463–544 (2023)
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Recursion & Fractal structure?

Major open question: when is QTT efficient in general?

χ = 5

Recursive construction → QTT

χ = 4

How to formalize?
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Zmeskal, Dzik, Vesely, Computers 
& Mathematics with Applications, 
Volume 66, Issue 2, 2013,

Entropy of fractal systems
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Solving the Vlasov-Poisson equation by time evolution in QTT:

Applications: plasma physics Ye, Loureiro, Phys. Rev. E 106, 035208 (2022)
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Applications: turbulence

2D: QTT-rank saturates for Reynold 
number ≥ 200

3D: QTT-rank increases according 
to a power law

Solving the incompressible Navier–Stokes equations iteratively in QTT :

Gourianov, Lubasch, Dolgov, van den Berg, Babaee, Givi, 
Kiffner, Jakscha, Nature Computational Science (2022)
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Applications: quantum chemistry
Jolly, Fernández, Waintal, arXiv:2308.03508Physical orbitals tend to be smooth → efficient QTT 

Solve Hartree-fock in QTT iteratively using DMRG (minimization):

Work in progress with 
Sandeep Sharma & 
Garnet Chan
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Assume an input vector v has length        ; want to compute DFT(v).
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Applications: “superfast” Fourier transform

- Time complexity for the fast Fourier transform:

- Total time complexity for converting v to QTT with rSVD + DFT QTT:

               if data can be compressed into an QTT with rank 

Total time

“superfast” Fourier transform Connection to sparse 
Fourier transform?

dominates time complexity
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Side note: convert vector into QTT

Cross-interpolation (iterate through all cuts):

Converting an exponentially-long vector to QTT takes exponential time with 
SVD, even when QTT is efficient. What are some other methods?

Initial guess → sampling environment → solve local LSE → sweep
DMRG-like method:

Dolgov, Savostyanov, Computer Physics 
Communications, Volume 246, 2020

Improve & 
Rigorous 
guarantee?



Summary & Discussion

- Efficient QTT construction for many important functions & operators

- Formalize efficient criteria for QTT?

- Directly connect to entanglement in quantum algorithms.

- Already been applied to many real-world differential equations.
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