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The problem we study

A 42) AB)

Goal: Contract a 2D (square-lattice) tensor network.

Q:
- Does the complexity of the contraction depend on the sign structure? i.e.
whether tensor entries are positive or general (real/complex).

- Ifyes, when (e.g. fraction of negative/positive) does the contraction
become easy/hard?



Our results

- We studied this problem in random tensor networks (i.e. each tensor is drawn
from i.i.d. distribution) and identified an entanglement transition point as one
increases “positiveness”.

- The transition is surprisingly sharp, from close to maximal entanglement to
almost zero entanglement.

- We found that such transition happens before the “sign problem” goes away, in
particularly the earlier the larger the bond-dim is, meaning there’'s a gap in
complexity between TN contraction vs. MC-based contraction.

- We found a mapping from a random PEPS norm into a positive tensor network,
providing alternative insights into average-case easiness of PEPS norm
contraction [1].

[1] Sofia Gonzalez-Garcia, Shengqi Sang, Timothy H. Hsieh, Sergio Boixo, Guifre Vidal, Andrew C. Potter, Romain Vasseur, Random insights into the complexity of two-dimensional
tensor network calculations, Phys. Rev. B 109, 235102 (2024)
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Motivation & Evidence: sign problem

In quantum Monte Carlo (QMC) simulations of fermions & frustrated spin systems,
there is the infamous “sign problem” which exponentially increases the number of
samples needed.

It has often been narrated that tensor networks can circumvent the sign problem,
e.g. [1], since by construction TNs do not depend on local basis choices.

3.3. Fermions

An advantage of the TN framework with respect to other numerical methods for quantum many-

body problems is the possibility of treating problems with fermionic degrees of freedom, which

is of fundamental interest for condensed matter and fundamental physics. Whereas in this case [1]
quantum Monte Carlo methods are often obstructed by the sign problem, which causes the cost

of convergence to increase exponentially with the system size, TN calculations can indistinctly

treat fermionic and spin setups.

How true is this statement? Lots of details & caveats... but one starting point is to
study how the contraction complexity of a tensor network depends on its sign
structure!

[1] Mari Carmen Bafiuls, Tensor Network Algorithms: a Route Map, Annual Review of Condensed Matter Physics



Motivation & Evidence: Gap from complexity theory

Complexity theory results also suggest there is an intrinsic gap between evaluating
sum of exponentially many terms with different sign structure:

General terms Only positive terms

Average-case #P-hard (counting the | Worst-case FBPPANP (Given an NP

number of solutions to an NP oracle, one can count the number of
problem; believed to be much solutions efficiently; polynomially
harder than NP) equivalent to NP)

Will this be reflected in random TN contractions? What is the
transition point as the TN becomes more positive?




Motivation & Evidence: Observation by Johnnie and Garnet
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Hyper-optimized approximate contraction of tensor networks with arbitrary geometry
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FIG. 17. Hardness transition in approximately contracting tensor networks with random uniform entries € [\, 1]. A: relative error, AZ, in

approximately contracted value of the URand model on the square lattice using the Greedy algorithm as a function of A and x with r = 2.

Line and bands show median and interquartile range across 20 instances. B: distribution of actual values Z for the square URand model in terms
of fraction of negative instances (green, left axis) and average absolute magnitude (purple, right axis). Error bars denote error on mean. C:
relative error, AZ, in approximately contracted value of the URand model on the diamond lattice using the Greedy algorithm as a function of
A and x with 7 = 2. Line and bands show median and interquartile range across 20 instances. D: distribution of actual values Z for the diamond
URand model in terms of fraction of negative instances (green, left axis) and average absolute magnitude (purple, right axis). Error bars denote
error on mean.

Gradually tune entries from
uniformly distributed in [-1, 1] to
[0, 1].

Observed transition of contraction
hardness near [-0.7, 1].

- Is there any significance of their
observed number?

- How does this number relate to
properties of the tensor network
(e.g. bond-dim)?
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Easy to contract = No entanglement barrier

- . ‘ Contractability is directly related
i to the bond-dimension required
— — to perform the contraction.

= =% ... Easy to contract =
No entanglement barrier

= — Goal: identify an effective
i theory to argue that, on

: : : average, positivity ina TN

implies low entanglement.




Model of random tensor network: Haar-random

Haar-random quantum state Equivalent to a vector with
i.e. random unitary/orthogonal entries drawn from i.i.d.
applied on a fixed state. D*2 Gaussian and then normalize it.
makes typical magnitude to be 1. Converges to Gaussian in limit.
D*U|0)** |+)®*
:; :j _|_ A / o=1
— >
A
We will consider Renyi-2 Integrating over unitary/orthogonal group  remmmmommm s
entropy for simplicity . )
| will show:

How to map the (average)

E [S( __________ // _ ' Rényi-2 entropy to the
| i partition function of a

classical stats model.

| will use the unitary
ensemble as the example.



Rényi-2 entropy as tensor network contraction

Tr (Trs <|w><w|>2>]>

E [~ log(p%)] ~ —log (E TP

~ —log (E [Tr (Trp (J0)())*)]) +log (E [|(1¢)[*])




Haar measure & Integrating over unitary
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[1] Antonio Anna Mele, Introduction to Haar Measure Tools in Quantum Information: A Beginner's Tutorial, arXiv:2307.08956



Integrating over local tensors of Rényi-2 TN




Contracting adjacent tensors

Contracting adjacent
tensors introduces a
scalar depending on the
number of loops & lines
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Effective classical stat-mech model

7-level Potts model with external field
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Boundary condition determines denominator & numerator

o Tr (Try (19) (0])°)
[ tosli)) ~ o ( P )
~ —log (E [Tr (Trs (J4)()*)]) + log (E [|(w[)I])




Gauge transform into a ferromagnetic model
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Transition point of the effective model

Competition between
% s 1/ | Prefer the latter 1 boundary condition and
> WD | five configuralions || magnetic field — disorder |
s L
@A @— =D |Fr Fn DN DN DN D2 DX
0 1
. )\<1/D\A " Prefer first two ' | Mixed boundary condition
i Transition point)\: 1/D! | :L__S;_o_r:]fl_g_y_r_a_tl_o_':]_s___: : ________ i)__d_c_)_n_]_a_l_r]_\{v_a_l_l _________

1 1/D  1/D°* 1/D°® 1/D% 1/D 1/D ]
1/D 1 1/D“ 1/D“ 1/D° 1/D°5 1/D
1/D%5 1/D'% 1 1/D  1/D  1/D  1/D%3| e
@@ — = |1/D°° /DY 1/D 1 /D 1/D 1/D%
1/D' 1/D°* 1/D  1/D 1 1/D  1/D°5
1/D'* 1/D% 1/D 1/D 1/D 1 1/D%
| /D 1/D 1/D°® 1/D°® 1/D%% 1/D% 1 |




iIMPS simulation of the effective model

iIMPS - iMPO algorithm

Roman Orus and Guifre Vidal, The iTEBD algorithm beyond
unitary evolution, Phys. Rev. B 78, 155117 (2008)
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Overlap between left/right dominant eigenvectors of
fixed-point IMPS

(l1|AlTo)
(lo|Alro)

1) = V(TN

(li] = V! (AL)

A = 0 case also relates to previous results:

[1] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, Andreas W. W. Ludwig, Entanglement Transitions from
Holographic Random Tensor Networks, Phys. Rev. B 100, 134203 (2019)

[2] Ryan Levy, Bryan K. Clark, Entanglement Entropy Transitions with Random Tensor Networks,
arXiv:2108.02225

____________________________________________________________________________



Finite-size simulation

We observed the same transition in finite-size simulation. We choose H >> W so
the entropy saturates (H = 4W in our simulation).

~ Wlog(D)




Is it because of rank-one instead of positivity?

Recall our model of random tensors:

D*U|0) y+>®4

A natural question to ask is whether the second component being rank-one (i.e.
percolation types of arguments) is the main reason for the complexity transition.

That is, what is the role of “positivity”?



Is it because of rank-one instead of positivity?

(@) random rank-one (but not positive)
(b)

random positive (but not rank-one)
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Sign problem in quantum monte carlo sampling
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Sign problem of random TN
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Map a random PEPS norm into a positive TN

If one traces out a large subsystem of a Haar random state, the remaining
density matrix is very likely to be highly noisy (very close to identity) [1], which
means they are separable [2].

= D b

—
—

—
—

[1] Patrick Hayden, Debbie W. Leung, Andreas Winter, Aspects of generic entanglement, Commun. Math. Phys. 265, 95-117 (2006)
[2] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Separability of Very Noisy Mixed States and Implications for NMR Quantum
Computing, Phys. Rev. Lett. 83, 1054—-1057 (1999)



Map a random PEPS norm into a positive TN

For a PEPS with Haar-random (a) (b)
tensors with large enough physical o O T

dimension, one can do such /] ( L i
decomposition in a TNR-like way, as P /y_ - o

in (c), and regroup tensors as in (d). = 5, oy

Yd

This maps it into a new TN with ©
entries being the trace of product of ® oo

PSD matrices, which are always
positive. @ t

This gives alternative insights into 3 @

average-case easiness of PEPS
norm contraction [1].

[1] Sofia Gonzalez-Garcia, Shengqi Sang, Timothy H. Hsieh, Sergio Boixo, Guifre Vidal, Andrew C. Potter, Romain Vasseur, Random insights into the complexity of two-dimensional

tensor network calculations, Phys. Rev. B 109, 235102 (2024)
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Complexity of positive TNs (in progress)

| will share two most interesting results:

1. For A > 1/D and D > n/(cIn(n)), there is a quasi-polynomial (poly(nlnsn))
time algorithm to approximate the random TN'’s contracted value with
high probability, up to 1/poly(n) multiplicative error. No reference to
entanglement is made in the algorithm.

2. Contracting an arbitrary TN with additive error bounded by the product  taiArad. zeph Landau, Quantum

computation and the evaluation of

of 2-norm of each tensor is BQP-complete. tensor networks, arXiv:0805.0040

Contracting a positive TN with additive error bounded by the product of
1-norm of each tensor is BPP-complete.



Summary

- We found a sharp transition from high-entangled phase to low-entangled phase
when the TN becomes positive, where the transition point is inversely proportional
to the bond-dim.

- On contrast, the sign problem in TN disappears only gradually as the positiveness
increases.

- The transition is a extremely strong concentration of measurement effect. How to
understand this better?

We acknowledge insightful conversations with Garnet Chan, Ryan Levy, Daniel Malz,
David Perez-Garcia, Bram Vanhecke, Frank Verstraete.



