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Sign problem in tensor network contraction



The problem we study

Goal: Contract a 2D (square-lattice) tensor network.

Q: 
- Does the complexity of the contraction depend on the sign structure? i.e. 

whether tensor entries are positive or general (real/complex).

- If yes, when (e.g. fraction of negative/positive) does the contraction 
become easy/hard?



Our results

- We studied this problem in random tensor networks (i.e. each tensor is drawn 
from i.i.d. distribution) and identified an entanglement transition point as one 
increases “positiveness”.

- The transition is surprisingly sharp, from close to maximal entanglement to 
almost zero entanglement.

- We found that such transition happens before the “sign problem” goes away, in 
particularly the earlier the larger the bond-dim is, meaning there’s a gap in 
complexity between TN contraction vs. MC-based contraction.

- We found a mapping from a random PEPS norm into a positive tensor network, 
providing alternative insights into average-case easiness of PEPS norm 
contraction [1].

[1] Sofia Gonzalez-Garcia, Shengqi Sang, Timothy H. Hsieh, Sergio Boixo, Guifre Vidal, Andrew C. Potter, Romain Vasseur, Random insights into the complexity of two-dimensional 
tensor network calculations, Phys. Rev. B 109, 235102 (2024)
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Motivation & Evidence: sign problem
In quantum Monte Carlo (QMC) simulations of fermions & frustrated spin systems, 
there is the infamous “sign problem” which exponentially increases the number of 
samples needed. 

[1] Mari Carmen Bañuls, Tensor Network Algorithms: a Route Map, Annual Review of Condensed Matter Physics

[1]

It has often been narrated that tensor networks can circumvent the sign problem, 
e.g. [1], since by construction TNs do not depend on local basis choices.

How true is this statement? Lots of details & caveats… but one starting point is to 
study how the contraction complexity of a tensor network depends on its sign 
structure!



Motivation & Evidence: Gap from complexity theory 

Complexity theory results also suggest there is an intrinsic gap between evaluating 
sum of exponentially many terms with different sign structure:

Will this be reflected in random TN contractions? What is the 
transition point as the TN becomes more positive?

General terms Only positive terms

Average-case #P-hard (counting the 
number of solutions to an NP 
problem; believed to be much 
harder than NP)

Worst-case FBPP^NP (Given an NP 
oracle, one can count the number of 
solutions efficiently; polynomially 
equivalent to NP)



Motivation & Evidence: Observation by Johnnie and Garnet

Gradually tune entries from 
uniformly distributed in [-1, 1] to 
[0, 1].

Observed transition of contraction 
hardness near [-0.7, 1].

- Is there any significance of their 
observed number?
- How does this number relate to 
properties of the tensor network 
(e.g. bond-dim)?
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Easy to contract ≈ No entanglement barrier

Contractability is directly related 
to the bond-dimension required 
to perform the contraction.

Easy to contract ≈ 
No entanglement barrier

Goal: identify an effective 
theory to argue that, on 
average, positivity in a TN 
implies low entanglement.



Model of random tensor network: Haar-random

We will consider Rényi-2 
entropy for simplicity I will show:

How to map the (average) 
Rényi-2 entropy to the  
partition function of a 
classical stats model.

I will use the unitary 
ensemble as the example.

Haar-random quantum state
i.e. random unitary/orthogonal 
applied on a fixed state. D^2 
makes typical magnitude to be 1.

Equivalent to a vector with 
entries drawn from i.i.d. 
Gaussian and then normalize it. 
Converges to Gaussian in limit.

Integrating over unitary/orthogonal group



Rényi-2 entropy as tensor network contraction



Haar measure & Integrating over unitary

Weingarten Function

[1] Antonio Anna Mele, Introduction to Haar Measure Tools in Quantum Information: A Beginner's Tutorial, arXiv:2307.08956

[1] [1]



Integrating over local tensors of Rényi-2 TN



Contracting adjacent tensors

Contracting adjacent 
tensors introduces a 
scalar depending on the 
number of loops & lines 

Left

Right

Left Right



Effective classical stat-mech model

7-level Potts model with external field



Boundary condition determines denominator & numerator



Gauge transform into a ferromagnetic model

Becomes 
ferromagnetic 
as D → ∞!



Transition point of the effective model

Tend to be ferromagnetic (spins aligned)

Mixed boundary condition 
→ domain wall

Competition between 
boundary condition and 

magnetic field → disorder
Prefer the latter 

five configurations

Prefer first two 
configurationsTransition point   :          !



iMPS - iMPO algorithm

iMPS simulation of the effective model

Overlap between left/right dominant eigenvectors of 
fixed-point iMPS

Roman Orus and Guifre Vidal, The iTEBD algorithm beyond 
unitary evolution, Phys. Rev. B 78, 155117 (2008)

low-ent.
high-ent.

[1] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, Andreas W. W. Ludwig, Entanglement Transitions from 
Holographic Random Tensor Networks, Phys. Rev. B 100, 134203 (2019)
[2] Ryan Levy, Bryan K. Clark, Entanglement Entropy Transitions with Random Tensor Networks, 
arXiv:2108.02225

λ = 0 case also relates to previous results: 



Finite-size simulation

We observed the same transition in finite-size simulation. We choose H >> W so 
the entropy saturates (H = 4W in our simulation).



Is it because of rank-one instead of positivity?

Recall our model of random tensors:

A natural question to ask is whether the second component being rank-one (i.e. 
percolation types of arguments) is the main reason for the complexity transition.

That is, what is the role of “positivity”?



Is it because of rank-one instead of positivity?

(a) random rank-one (but not positive)

(b) random positive (but not rank-one)

The “positivity” part is important 
to observe the transition! 

Or in other words, the rank-one 
states need to be “aligned”.
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Sign problem in quantum monte carlo sampling

sample 

error

estimate by

“sign problem”: exponential 
dependence on N caused
by

positive/negative

sample                  

estimate by

error



Sign problem of random TN

“Sign problem” in TN:

                     samples needed to overcome 
the sign problem.

:

:

:
orthogonal

unitary

Sign problem only starts to 
disappear when 
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Map a random PEPS norm into a positive TN

If one traces out a large subsystem of a Haar random state, the remaining 
density matrix is very likely to be highly noisy (very close to identity) [1], which 
means they are separable [2].

[1] Patrick Hayden, Debbie W. Leung, Andreas Winter, Aspects of generic entanglement, Commun. Math. Phys. 265, 95–117 (2006)
[2] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Separability of Very Noisy Mixed States and Implications for NMR Quantum 
Computing, Phys. Rev. Lett. 83, 1054–1057 (1999)



Map a random PEPS norm into a positive TN

For a PEPS with Haar-random 
tensors with large enough physical 
dimension, one can do such 
decomposition in a TNR-like way, as 
in (c), and regroup tensors as in (d).

This maps it into a new TN with 
entries being the trace of product of 
PSD matrices, which are always 
positive.

This gives alternative insights into 
average-case easiness of PEPS 
norm contraction [1].

[1] Sofia Gonzalez-Garcia, Shengqi Sang, Timothy H. Hsieh, Sergio Boixo, Guifre Vidal, Andrew C. Potter, Romain Vasseur, Random insights into the complexity of two-dimensional 
tensor network calculations, Phys. Rev. B 109, 235102 (2024)
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Complexity of positive TNs (in progress)

2. Contracting an arbitrary TN with additive error bounded by the product 
of 2-norm of each tensor is BQP-complete.

Contracting a positive TN with additive error bounded by the product of 
1-norm of each tensor is BPP-complete.

I will share two most interesting results:

Itai Arad, Zeph Landau, Quantum 
computation and the evaluation of 
tensor networks, arXiv:0805.0040

1. For               and                        , there is a quasi-polynomial (                 ) 
time algorithm to approximate the random TN’s contracted value with 
high probability, up to                 multiplicative error. No reference to 
entanglement is made in the algorithm.



Summary

- We found a sharp transition from high-entangled phase to low-entangled phase 
when the TN becomes positive, where the transition point is inversely proportional 
to the bond-dim.

- On contrast, the sign problem in TN disappears only gradually as the positiveness 
increases.

- The transition is a extremely strong concentration of measurement effect. How to 
understand this better?

We acknowledge insightful conversations with Garnet Chan, Ryan Levy, Daniel Malz, 
David Perez-Garcia, Bram Vanhecke, Frank Verstraete. 


